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ON THE STABILITY OF INHOMOGENEOUSLY VISCOELASTIC REINFORCED BARS* 

N.Kh. ARUTIUNIAN andV.B. KOLMANOVSKII 

There is investigated the stability of inhomogeneously ageing reinforced visco- 

elastic bars. It is assumed that the strains and stresses in the reinforcement are 

related by Hooke's law. The properties of the matrix material are described by 

equations of the theory of viscoelasticity of inhomogeneously ageing solids /1,2/. 

Under different boundary conditions for the ends of the bar and loading methods an 

expression is set up for the critical force in stability problems in an infinite 

time interval. The stability definition taken corresponds to the Liapunov stability 

definition for the motion of dynamical systems. Estimates of the criticaltimewhen 

the magnitude of the deflection of a viscoelastic bar reaches a given value are ob- 

tained for stability problems in a finite time interval. The formulation for the 

stability problem in a finite time interval starts from the definition of stability 

of motion of dynamical systems by taking its beginning from the Chetaev work. The 

dependence of the critical time on the inhomogeneity and the reinforcing parameter 

is investigated numerically. The stability of viscoelastic unreinforced bars was 

studied in /3,4/, A survey and bibliography of research associated with the stabil- 

ity problem for viscoelastic bars are available in /S-8/. 

1. Model of an inhomogeneously ageing viscoelastic solid. Its specific inhomo- 

geneity characterizes the model of an inhomogeneously ageing viscoelastic solid with time-vary- 

ing elastic and rheological properties. This inhomogeneity is due to the factthatthenatural 

and artificial ageing processes in such a solid proceed dissimilarly in all its elements. 

Hence, the age of the material generally depends on the spatial coordinates, which, in turn, 

determines the form of the function characterizing the properties of the viscoelastic solidas 

a function of the time and spatial coordinates. 

The model mentioned can describe the processes of discrete and continuous accumulation of 

elements of different age by viscoelastic solids. The equation of state relating the strain 

sx (t) to the stress a*(t) for an inhomogeneously ageing solid in the uniaxial state of stress 

has the following form: 

0% (f) ! % 0) = - 
s E(t+p(Q) ,. 
a,(s) K 0 + p(r), s + p(r)) as 

K(t, r)=-& [& + N(t, T)j 

(1.1) 

(1.2) 

Here K(~,T) is the creep kernel for a homogeneously ageing solid, E(t) is the variable 

modulus of instantaneous elastic strain, N(t,r) is the measure of the material creep, to is 
the time of stress application, p(s) is the age of an element with coordinate z relative toan 

element with the coordinate 5 = 0. 

2. Equation for the deflection ofareinforcedviscoelasticbar. Let US derive 

the equation for the deflections of a reinforced inhomogeneously viscoelastic bar under the 
following hypotheses: 

1) The strains and stresses in the reinforcementsatisfy Hooke's law, andthe relationships 
(1.1) and (1.2) in the main material; 

2) The center of gravity of the reinforcement in each section of the bar agrees with the 
center of gravity of the main material; the bar cross sections are identical and are oriented 
identically; 
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3) The transverse sections of the bar elements remain planar during deformation and the 

law of plane sections is valid. 

Let us insert acartesian coordinate system with origin 0 at the center of gravity of the 

transverse section in the bar. We take the line of intersection of the bar bending planewith 
the plane of the transverse section as the z axis. The z1 axis agrees with the neutral axis 
(see Fig.1). The trace of the reinforcement is shown by the solid lines in Fig.1. 

By virtue of the law of plane sections we have 

e, (t, z) = 0 (t)z (2.1) 

I b(Z) I where CII (t) is the curvature of the bar neutral line at the 
- time t. 

0 Zi 
We take the viscoelasticity law for the main material in 

the form of (1.1) and (1.2) for a constant modulus of instant- 

aneous elastic strain Eand the creep measure N (t, T) satis- 

dZ fying the equality 

I '//Y/d 

4 
N (t, T) = 'p (z)Il - e-Y(t-T)] (2.2) 

In conformity with Hooke's law, we will have for the i- 

th element of the reinforcement 

uai (t) = &~d (t) (2.3) 

The equilibrium equation yields 
Z 

Fig.1 i: F:& + Su,(t, z) zb (z) dz = M (t, 5) (2.4) 
i=l F 

Here Fai is the cross-sectional area of the i-th element in the reinforcement, F is the 
area of the main part of the section, and M(t,z) is the bending moment in the section 2. 

It follows from the relationships (2.1) and (1.1) that 

Here R(t,r) is the resolvent of the kernel EK(~,T). Substituting (2.3) and (2.5) into 
the equilibrium equation (2.4)) we obtain 

w(t) + B jo(r)K(t + p(m), r + p(r))dr= -A JJ(L I) 
(2.6) 

t 

J = E-' (E,J, + EJ,), p = J,J-’ 

Here J, is the moment of inertia of the reinforcement relative to the axis 02, and J, 

denotes the moment of inertia of the transverse section of the main material relative to the 

axis 02,. 
Furthermore, because of (/9/, p.185) and (1.2) and (2.2), we have 

R (t, z) = - y(~ (z) E + [yav (.t) E + y2$ (7) Es + ycp’ (7) E] i cQ@)+*:~) ds, q (t) = y f [i + Ecp (s)] ds (2.7) 
r 

Moreover 

0 (t) = y" (t, 5) - y0" (z), y' (t, 5) = ay (t, x)/& (2.8) 

Here y(t,s) is the deflection of the neutral axis, the coordinate is x, O<xgl, and 

y~(z)is the initial deflection of the bar. We substitute (2.7) and (2.8) into (2.6) and dif- 

ferentiate what is obtained twice with respect to t. We obtain an equationfor thedeflection 

o = y"" (t, z) + y [1 + E~J (t + p(z)) (I- B)l Y”’ 0. x) + &M” (k 4 + & hf. (L 4 [I + EQJ (t + P @))I (2.9) 

y' (t, 5) = ay (t, r)lf%, t > to 

For unreinforced bars (i.e., for fi = I), the equation (2.9) has been presented earlier 

in /4/. The magnitude of the deflection y(to,x) at the initial time to directly after 
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application of the stress will satisfy the equation 

1 
y"(ta, 2) + EJ M (tll, z)= Yom(m) (2.10) 

The rate of change of the deflection at the initial time (i.e., the derivative y'(t,Z) at 

t = t,,) satisfies the equation 

y’” (to* 4 + -& M’ (to, 2) = - * q (to + p (x)) hf (to, x) 
(2.11) 

In order to determine the quantity y(to,s) and y'(&,m) from (2.10) and (2.111, specific 

methods for loading the bar and conditions for fixing its ends must be given to determine the 

bendingmoment M(t,x) and the boundary conditions. 

3. Stability in an infinite time interval. Since methods to investigate the stab- 
ility are quite similar for different situations, the stability of a bar whose lower end (X = 

I) is framed while the upper is free subjected to a distributed load, will be studied in de- 

tail below. With respect to the remaining cases, we shall limit ourselves to the formulation 

of the problem and the stability conditions. 
The bar is placed along the Ox axis in the undeformed state. The deflection of the bar 

Y(t,z) at the point x at the time t >to is measured from the Ox axis. 
The bar is called stable if for any i$>O there is a &>Osuch that for t > to and 

O,<x<l there will be 

SUP~.~ I Y (t, x) I -C 6, when SUP, I y. (4 I -c 6, (3.1) 

The equation for the deflection has the form (2.9). The inhomogeneous ageing function 

p(x) in this equation is assumed bounded, piecewise-continuously differentiable, and with a 

finite number of points of discontinuity for the derivative. 

From the boundary conditions of the bar ends we have the following equations: 

y (1, 0) = 0, y" (t, 0) = 0, y’ (t, 1) = 0 (3.2) 

The function 'p is positive, continuously differentiable, and 

lim cp (t) = C,, lim cp' (t) = 0, t + 00, C, > 0 (3.3) 

The bar is subjected to a constant longitudinal load of magnitude g. The bending moment 

M(t,x) in the section .z is given by the expression 

M(L x)-gS(y(t. x)-y@, 2))dZ (3.4) 

II 

Let us introduce the sequence q,,(x) of eigenfunctions and the sequence h, of eigenvalues 

of the boundary value problem 

$n" (2) + Q& (5) = 01 %I (0 = 0, Q,' (0) = 0 (3.5) 

It is known that the functions $,,(I) are orthonormal in the generalized sense, i.e.,(see 

/lo/, for instance) 

s $?I (x) &(z)xdx= 0, 6,, = 0, n#m, &,=I, n=m (3.6) 
cl 

Let the derivative y’(t,x) be represented as an absolutely and uniformly convergentseries 

in the functions Q*(z): 
m 

Y'@. 5) = r, A, (t)%(x). (3.7) 
?I==0 

A, (t) = s %, (4 Y' (t, 5) x dX (3.8) 
0 

We substitute (3.4) and (3.7) into (2.9), we differentiate both sides of the equality ob- 
tained with respect to x, and then multiply by q,,(x) and integrate with respect to x between 
zero and 1. We consequently obtain 

(3.9) P,, (A”, + y-4,‘) + YGA,’ + YE 2 &‘h,,,, (t) + a,,,,, = 0, 

p, = i - EJg-‘h 
m=o 

n 
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(3.10) 
m-O II 

Let us manipulate the expression for a,,. Integrating twice by parts, andtakingaccount 
of the boundary conditions (3.5), we obtain 

t P(4--C,)dz 4 

Hence, and from (3.10), there results 

m 
a 71n=- yE (1-p) (C&A,'-- 2 a$,&') 

m==ll 

We now establish that the sufficient condition for stability is 

g< a?--(1 + EC,(l-fl)), n,= 7.83731-3 

(3.11) 

(3.12) 

Here A, is the minimal eigenvalue of the boundary value problem (3.5). 

This stability condition for unreinforced bars (i.e., for p = 1) is established in /4/. 
If the percentage of reinforcement is increased, where j3 -*O (i.e., an elasticbar isobtained 
in the limit), then the known stability condition for an elastic bar subjected to a distribut- 

ed load g< JEh, is obtained from (3.12) (see /ll/, for example). There results from (3.12) 
that the critical length I, of a viscoelastic reinforced bar equals 

1, = 1.9863 [JEg-’ (1 - EC& (1 -t EC,)-‘)]‘/3 

Because of (3.12), an increase in the critical length I, of a reinforced viscoelasticbar 

as compared with the critical length 1, of the corresponding unreinforced bar is describedby 

the expression Lo3 = Zr3(1 + (1 -fl) EC,). 
Let us examine another limiting case in which the main material is assumed elastic with 

the elastic modulus E. Let I, denote the critical length of the reinforced bar for which 

both the reinforcement and the main material are subject to Hooke's law. It is clear thatthe 

quantity I, should be greater than the critical length of the corresponding viscoelastic re- 

inforced bar. On the basis of (3.12), the dependence between 10 and 1, has the form 

Let us turn to giving a foundation for the stability condition (3.12) _ We consider the 

function az 

In conformity with (3.9)- (3.11) we have 

m m 

v’ (t) = 2y 2 A,‘2 [ - I- 2 + ECo (*p; ‘) “-1 - 2yE x A,& r, &,,,A,’ + Q 
n==o 7lZ” m==ll 

C? = - DYE (1-N ,,, A,’ 0) P,, m$o a%%,,’ (4 

(3.13) 

We examine the separate components in the right side of (3.13). The eigenvalues h, of 

the boundary value problem (3.5) are determined from the equation J-I,, (“/, l/h,l”) = 0, where 

J-V, is the Bessel function of the first kind of order -'is (see /ll/, for example). Consequ- 

ently, the numbers h, satisfy the asymptotic equality /12/ 
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a,=Clna, n+co, c,>o (3.14) 

This means that the maximum of the expression in the square brackets in (3.13) is achiev- 

ed for the minimal eigenvalue ho. The inequality (3.12) indeed results from the requirement 

of negativity of this maximum. 

Furthermore, as is proved in /4/, the following formula is valid 

(3.15) 

Here and henceforth, f(t) denotes certain different continuous non-negative functions such 

that 
lim f (t) = 0 (3.16) 
I-cc 

Finally, we turn to an estimate of 'the quantity Q. We let C denote certain distinct 

non-negative constants. We note initially that 

1 ii A,‘WPL, i a,‘(t)Sg,(z)$.I(~)~~rp(t+~(3))IG (3.17) 
n=!I m==a 0 

CV@) r, P,‘S(W,.)a(‘P’)‘drgCf(t)I/(t) i IlnaL<f(t)V(t)i 
n=ll 0 n=a 

We now estimate the expression 

QI = 1 si A,’ (0 rJ, ,i i N,, (4 %n (4 (cp (t + P(Z)) - Co) dz ( 
n=4 m==oLl 

We represent the product @,, in the form 

(3,la) 

pJ,=-& I$ 
[ ( l- 7&f &] (3.19) 

We substitute (3.19) into (3.18) and estimate the two components resulting here.Byvirtue 

of the Parseval equality /lo/ the first is estimated as follows: 

Because of the asymptotic (3.14), the second component is estimated similarly to (3.17). 

This means Qrg f(t) V(t). Therefore, we finally conclude that 

V’ (t) < 2y [ - 1 + ECo - ECo (i - 8, I0 + f(t)] v (t) E&g-~ - i (3.20) 

Now we estimate V(t,). The initial conditions for the system (3.9) are given by the fol- 

lowing formulas that result from (2.10) and (2.11): 

A,, (to) = - A,,“&,EJg-‘pn-‘. A,“= 1 y,,’ (z) 9, (cr) x dz 
0 

From the Parseval equality and (3.21) there results that 

cz 

=z A,,'&) < G(r(Y,'(+*dr 
0 

Furthermore, taking account of (3.10) and the boundary conditions (3.5) we have 

(3.21) 

(3.22) 

(3.23) 

Formulas (3.21)- (3.23) yield 
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There results from (3.24) that T/(to)< 00. Hence, and from (3.16) it follows that 

1/ (t) < C exp (-Ct), t > to, C z-0 (3.25) 

Let z(t, s) denote the function 

z(t,~)=expi-~(t-~)--(l-_)S~)(~+~(~))d~J (3.26) 

s 

By virtue of (2.9) we have 

M’ (s, x) cp (5 + p (4) z (t, s) ds (3.27) 
Ln 

Because of (3.26) the first component in the right sideof (3.27) decreases exponentially 

as t-co. An analogous conclusion is valid with respect to the remaining componentsin (3.27). 
To prove this we note that by virtue of (3.4) and the boundary conditions (3.2; and the 
Parseval equality we will have 

Hence, and from (3.27) and (3.25) we finally conclude that 

I y’” (t, 5) I < C, exp (-Ct), C >O, t > lo 

But 

y (t, x) = ~(to. z) + ii G(x, E) y’“(s, 5)ds dE 
00 

G (x, E) = x, x<<s; G(z,Q=f, z>,E 

(3.28) 

(3.29) 

This means that because of (3.28) and (3.24) the estimate (3.1) will hold. The suffici- 

ency of the conditions (3.12) is thereby established for the stability of a bar in an infinite 

time interval. 

It can analogously be proved /4/ that a viscoelastic bar is unstable if the condition 

(3.12) is violated. 

4. Stability in a finite time interval. Different formulations are possible for 

the stability of a bar in a finite time interval. Let us examine two of them by considering 

an elastic bar stable, i.e., by considering that g < J-W,. 
lo. There is a finite time interval [O, Tl, where T is a given number. It is required 

to determine the conditions that must be satisfied in the time interval [O, T] for the deflec- 

tion zj(t,x) not to exceed a given critical value y* for any z, i.e., 

SUP, SUP, I y (t, 4 I ~< y*, t E LO, Tl, 0 < x -S l (4.1) 

To obtain the stability conditions it is sufficient to estimate the leftside oftherela- 

tionship (4.1). One of the estimation methods is based on the representation (3.29) and form- 

ulas (3.25)- (3.28) in which the quantities therein are to be expressed in termsoftheinitial 

characteristics of the problem. Such a method of operation is realized in detail for un- 

reinforced bars /3,4/. Here we present another method of estimating the deflection which is 

valid for more general kernels K in the equation of state (1.2). It follows from (2.6) that 

w(t)=--&M((t,s)+I, I=i41(r,x)K~(B.t+p(x),r+p(r))~~ 
f. 

(4.2) 

where Klis the resolvent of the kernel -_BR(t + p(s), r + p(x)). We differentiate both sides of 
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(4.2) with respect to 2. We obtain 

Here G(s, 5) is the Green's function of the problem (3.5) for a, = g(J.E)-'. 
more have 

p(t,l)-_Cl(t.E) 
6 

~d~G((zJ)I,< BIS~~$~(Y(~,E)--Y(~,L))~~~~X 
L. 00 

(4.3) 

We further- 

(4.4) 

(4.5) 

From (4.5) and the Gronwohl-Bellman lemma, we have the estimate 

Comparing this with (4.1), we conclude that a sufficient condition for stability in the 

sense of validity of the inequality (4.1) will have the form 

2O. Another formulation of the stability problem in a finite time interval is the follow- 

ing. The magnitude y* of the allowable limit value of the deflection is known. Determine the 
critical time tl at which the maximum value of the deflection first equals y*, i.e., t > to, 
o,<x<z: 

maxt y (t) = y*, D (t) = max, IY (t, 5) I (4.7) 

Let us estimate the value of the critical time t,. It can be shown similarly to (4.5) that 

yl(t),<qo+ ~yr(&(B~~~~)ds (4.8) 

LO 0 

Let R, denote the resolvent of the kernel 

~K~(P.h.v)d~ 
0 

It follows from (4.8) that 

YI (t) < h(t), fl (t) = qo + qo j: R, (B, t, 7) dT 
” 

This means that on the basis of (4.8) the critical time tl> tl-, where tl- is the least 
root of the equation ,fl(t) = y*, t > to. 

The solution of equation (2.6) under the conditions (3.2) and (3.4) is necessary for a 

numerical investigation of the formulated stability problem. 
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Let the bar consist of two pieces of identical length and let the age be constant 

each piece. 
The following numerical values of the parameters are general in the computations: 

v(r) = C +A exp (- fllr), 1 = Im, y,” = - 2.1O-3 m -1,~ =O.O06day -1, b1 = 0. 031 day-l, 

C = 0.2761.10' MPa 
-1 

, A = IO-* MPa 
-1 , E = 3.3.104MPa. y* = 2.2.10-3m, glJE = 3.10-2m- 

Values of the critical time 

days) are presented in Fig.2 as a 

500 

300 

-/ 

‘1 
fO0 

a 40 ilp 00 ia0 

within 

I, (in 

func- 

tion of the difference in the agesofthe 

bar pieces Ap (in days) for 8 _- 0.5 (solid 

line), as is also the dependence of the 

critical time t, on the degree of rein- 

forcement 8 (dashes). The function is 

p (z) = 50 days for o < z -< 0.5 and p (z) = 0 

for 0.5 < I 4' 1 for the dashed line.Results 

of computations showed that the critical 

time increases both as the difference in 

the ages increases and as the degree of 

,I ziO 1 1 reinforcement increases. 

0 400 t,davs The dependence of the deflection 

Fig.2 

, - 
value B(l) that is maximum in z is pre- 

Fig.3 
sented in Fig.3inthe form of a function 

of time t (in days) for b=O.S. Thecurves 

correspond to different values of the dif- 

ference in the ages Ap . The quantity 

the upper curve and 100 days for the lower curve. AP varied between 0 for 

5. Remark. The method developed above for the investigation of the stability of visco- 

elastic reinforced bars is also applicable for certain other situations. In every specific 

case presented above, the equation for the deflections has the form (2.9), but the boundary 

conditions change as a function of the method of fixing the bar ends. Bar stability is exam- 

ined in an infinite time interval in the sense of (3.1). 

lo. There is a viscoelastic reinforced bar subjected to its own weight, and under moving 

support of the upper end and hinged support of the lower end. The boundary conditions for the 
deflection have the form 

The 

2O. 
boundary 

The 

I/’ (t, 0) = 0, yn (t. 0) = 0, y” (t, I) = 0 

stability condition is given by formula (3.12) in which 

1, = 3.524 1-% 

We consider a bar with clamped lower end and moving support of the upper end. The 

conditions have the form 

y' (t, 0) = 0, y" (t, 0) = 0, y' (t, 1) = 0 

bar is subjected to a weight with a constant longitudinal load g. The stability 

condition has the form (3.12) for 

3O. 

h, = 18. 99I-8. 

Let the bar studied in Sect.3 be subjected to a longitudinal force Pat the upper 

end. The mangnitude of the moment is Py(t,z). The value of the critical force is givenbythe 

right side of (3.12) for h, = 4n=1-=. 

The authors are grateful to V.V. Metlov for performing the computations. 
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